使用GANOS实现洪涝灾害承灾体损失综合评估

  • 时间:
  • 浏览:0

有林地洪灾损失价值分布图如下:

当然,也不到把之后所有的SQL都组合到一同直接进行计算,同样以有林地为例:

PL/pgSQL与ACL结合使用,则提供了更为强大的易用的栅格分析工具。PL/pgSQL提供变量和常量的声明,通用数学表达式,基本函数,逻辑判断和流程控制,ACL为栅格计算提供像元代数计算的表达最好的最好的办法 。用户不到轻松地结合本身 的优势进行时光栅格的分析与建模,如对全球年平均气温做减法(-)运算以便获得全球气温变化趋势。

ST_MapAlgebra函数使用特定的代数计算表达式对栅格数据的每个像素值进行计算,获得有有另另一个多新的栅格数据。借促使强大的代数计算表达式,用户不到非常方便地对栅格数据进行运算操作

是也有感觉很神奇呢?

该模型利用洪水灾害淹没水深分布,结合承灾体类型、承灾体价值及脆弱性数据,计算灾害损失率和损失价值分布。

ST_Resize函数根据用户指定的尺寸和重采样最好的最好的办法 对栅格数据进行变换,变化结果对应的地理空间范围保持不变。数据来源的不同意味栅格数据的空间分辨率不尽相同,通过本函数不到将不同的栅格数据确保具备有相同的空间分辨率以便进行下一步计算分析。

ST_Reclassify函数按照用户指定的规则对栅格数据的像素值进行分类,从而获得有有另另一个多新的栅格数据。

以海口市台风“海鸥”(201418)洪水灾害为例,计算承灾体洪水灾害损失率和损失价值分布。具体计算步骤如下:

利用Ganos的时光栅格存储、计算和分析能力,将多样化的洪涝承灾体损失计算模型转化为简单的Geo-SQL语句,使得过去不到借促使GIS软件的专业的时光数据补救流程能在数据库内实现,多样化用户的tcp连接逻辑,降低开发多样化度与维护成本, 使云GIS能力赋能行业用户。

洪涝灾害是我国目前面临的最主要的自然灾害,利用洪涝灾害承灾体损失综合评估模型,对灾害损失率和损失价值分布进行科学地计算,对于指导洪涝救灾、建立灾害预警机制、加强洪涝灾害成灾机制的研究,建立和完善更科学、更准确的洪灾损失评估预测体系具有重要的意义。

Ganos是阿里云自研的时光数据库引擎,含高了几何,栅格,点云,几何网络和轨迹模型5大数据模型,支持RDS POSTGRESQL 和 POLARDB-PG产品。其中针对时光栅格数据类型,Ganos提供了超大规格栅格数据存储、计算能力,单幅栅格数据理论上无容量限制,具备全球一张图的管理能力,使得传统GIS中多样化的栅格分析操作不到使用Geo-SQL轻松实现,并具备了与几何数据类型统一分析能力。 具体函数参见 https://help.aliyun.com/document_detail/107567.html?spm=a2c4g.11174283.6.1150.17634c22GrQgYR。

阿里云TST团队(Team of Spatio-Temporal kernel)由来自计算机、GIS、遥感等不同领域技术专家构成,是怀揣一同梦想——让50%行业用到时光云计算、迸发着活力和激情的一群创业者。团队主攻云上空间时光内核引擎技术架构、算法、系统平台研发与应用,致力于将GIS与时光信息补救嵌入到PaaS云计算基础设施,使之成为新一代数字框架的基础维度普惠到更多用户

地图代数是栅格分析与GIS建模中常用技术最好的最好的办法 。Ganos为栅格图层计算操作提供了栅格代数表达式语言和一组栅格代数函数,称为ACL(Algebra Computing Language)。 ACL包括通用算术运算符,逻辑运算符,位运算,关系运算符以及一组统计函数,并允许它们自由组合使用,实现更为多样化的运算操作。Ganos 栅格借促使ACL强大的计算表达式,支持基于有有另另一个多或多个栅格对象像元值的条件查询,数学建模,分类操作以及生成新的结果栅格对象。

Loss = DR * E

其中Loss为损失价值,DR为灾害损失率,E为承灾体价值。

DR=f(H)  

其中DR为每类承灾体的损失率;H为致灾因子时延;f为致灾因子和损失率映射关系。

数据入库时不到根据不到对数据进行预补救,如使用ST_Transform进行投影变换、ST_Resize修改分辨率等操作,从而获得指定的空间参考和分辨率:

依照公式2, 将承灾体价值和损失率进行栅格相乘,得到承灾体损失价值分布:

ST_Transform函数对栅格数据做空间参考的变换。数据来源不同意味数据的空间参考不同,通过本函数不到将不同来源的数据统一到同有有另另一个多空间参考系统中。

输入的数据包括:

本案例中用到了空间参考投影变换, 栅格分辨率修改, 像素值重分类和栅格代数运算八个功能。